
ModelArts

Best Practices

Issue 01

Date 2024-06-12

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Security Declaration

Vulnerability

Huawei's regulations on product vulnerability management are subject to the Vul. Response Process. For
details about this process, visit the following web page:
https://www.huawei.com/en/psirt/vul-response-process
For vulnerability information, enterprise customers can visit the following web page:
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. ii

https://www.huawei.com/en/psirt/vul-response-process
https://securitybulletin.huawei.com/enterprise/en/security-advisory

Contents

1 Permissions Management... 1
1.1 Basic Concepts.. 1
1.2 Permission Management Mechanisms.. 7
1.2.1 IAM... 7
1.2.2 Agencies and Dependencies.. 10
1.2.3 Workspace..32
1.3 Configuration Practices in Typical Scenarios... 32
1.3.1 Assigning Permissions to Individual Users for Using ModelArts...33
1.3.2 Separately Assigning Permissions to Administrators and Developers.. 35
1.3.3 Viewing the Notebook Instances of All IAM Users Under One Tenant Account...43
1.3.4 Logging In to a Training Container Using Cloud Shell... 44
1.3.5 Prohibiting a User from Using a Public Resource Pool.. 46

2 Model Development (Custom Algorithms in Training Jobs of the New Version)
...49
2.1 Using a Custom Algorithm to Build a Handwritten Digit Recognition Model.. 49

3 Model Inference...68
3.1 Creating a Custom Image and Using It to Create an AI Application..68
3.2 End-to-End O&M of Inference Services...72
3.3 Creating an AI Application Using a Custom Engine... 75
3.4 Using a Large Model to Create an AI Application and Deploying a Real-Time Service.............................. 79
3.5 High-Speed Access to Inference Services Through VPC Peering.. 83

ModelArts
Best Practices Contents

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. iii

1 Permissions Management

1.1 Basic Concepts
ModelArts allows you to configure fine-grained permissions for refined
management of resources and permissions. This is commonly used by large
enterprises, but it is complex for individual users. It is recommended that
individual users configure permissions for using ModelArts by referring to
Assigning Permissions to Individual Users for Using ModelArts.

NO TE

If you meet any of the following conditions, read this document.
● You are an enterprise user, and

● There are multiple departments in your enterprise, and you need to control users'
permissions so that users in different departments can access only their dedicated
resources and functions.

● There are multiple roles (such as administrators, algorithm developers, and
application O&M personnel) in your enterprise. You need them to use only specific
functions.

● There are logically multiple environments (such as the development environment,
pre-production environment, and production environment) and are isolated from
each other. You need to control users' permissions on different environments.

● You need to control permissions of specific IAM user or user group.
● You are an individual user, and you have created multiple IAM users. You need to assign

different ModelArts permissions to different IAM users.
● You need to understand the concepts and operations of ModelArts permissions

management.

ModelArts uses Identity and Access Management (IAM) for most permissions
management functions. Before reading below, learn about Basic Concepts. This
helps you better understand this document.

To implement fine-grained permissions management, ModelArts provides
permission control, agency authorization, and workspace. The following describes
the details.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 1

ModelArts Permissions and Agencies

Figure 1-1 Permissions management

Exposed ModelArts functions are controlled through IAM permissions. For
example, if you as an IAM user need to create a training job on ModelArts, you
must have the modelarts:trainJob:create permission. For details about how to
assign permissions to a user (you need to add the user to a user group and then
assign permissions to the user group), see Permissions Management.

ModelArts must access other services for AI computing. For example, ModelArts
must access OBS to read your data for training. For security purposes, ModelArts
must be authorized to access other cloud services. This is agency authorization.

The following summarizes permissions management:

● Your access to any cloud service is controlled through IAM. You must have the
permissions of the cloud service. (The required service permissions vary
depending on the functions you use.)

● To use ModelArts functions, you need to grant permissions through IAM.
● ModelArts must be authorized by you to access other cloud services for AI

computing.

ModelArts Permissions Management
By default, new IAM users do not have any permissions assigned. You need to add
a user to one or more groups, and assign permissions policies or roles to these
groups. Users inherit permissions of the groups to which they are added. This
process is called authorization. After authorization, users can perform operations
on ModelArts based on permissions.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 2

CA UTION

ModelArts is a project-level service deployed and accessed in specific physical
regions. When you authorize an agency, you can set the scope for the permissions
you select to all resources, enterprises projects, or region-specific projects. If you
specify region-specific projects, the selected permissions will be applied to
resources in these projects.

When assigning permissions to a user group, IAM does not directly assign specific
permissions to the user group. Instead, IAM needs to add the permissions to a
policy and then assign the policy to the user group. To facilitate user permissions
management, each cloud service provides some preset policies for you to directly
use. If the preset policies cannot meet your requirements of fine-grained
permissions management, you can customize policies.

Table 1-1 lists all the preset system-defined policies supported by ModelArts.

Table 1-1 System-defined policies supported by ModelArts

Policy Description Type

ModelArts
FullAccess

Administrator permissions for
ModelArts. Users granted these
permissions can operate and use
ModelArts.

System-defined
policy

ModelArts
CommonOperations

Common user permissions for
ModelArts. Users granted these
permissions can operate and use
ModelArts, but cannot manage
dedicated resource pools.

System-defined
policy

ModelArts
Dependency Access

Permissions on Dependent Services
for ModelArts

System-defined
policy

Generally, ModelArts FullAccess is assigned only to administrators. If fine-grained
management is not required, assigning ModelArts CommonOperations to all users
will meet the development requirements of most small teams. If you want to
customize policies for fine-grained permissions management, see IAM.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 3

NO TE

When you assign ModelArts permissions to a user, the system does not automatically assign
the permissions of other services to the user. This ensures security and prevents unexpected
unauthorized operations. In this case, however, you must separately assign permissions of
different services to users so that they can perform some ModelArts operations.

For example, if an IAM user needs to use OBS data for training and the ModelArts training
permission has been configured for the IAM user, the IAM user still needs to be assigned
with the OBS read, write, and list permissions. The OBS list permission allows you to select
the training data path on ModelArts. The read permission is used to preview data and read
data for training. The write permission is used to save training results and logs.

● For individual users or small organizations, it is a good practice to configure the Tenant
Administrator policy that applies to global services for IAM users. In this way, IAM users
can obtain all user permissions except IAM. However, this may cause security issues. (For
an individual user, its default IAM user belongs to the admin user group and has the
Tenant Administrator permission.)

● If you want to restrict user operations, configure the minimum permissions of OBS for
ModelArts users. For details about fine-grained permissions management of other cloud
services, see the corresponding cloud service documents.

ModelArts Agency Authorization

ModelArts must be authorized by users to access other cloud services for AI
computing. In the IAM permission system, such authorization is performed
through agencies.

To simplify agency authorization, ModelArts supports automatic agency
authorization configuration. You only need to configure an agency for yourself or
specified users on the Global Configuration page of the ModelArts console.

NO TE

● Only users with the IAM agency management permission can perform this operation.
Generally, members in the IAM admin user group have this permission.

● ModelArts agency authorization is region-specific, which means that you must perform
agency authorization in each region you use.

Figure 1-2 Settings

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 4

On the Global Configuration page of the ModelArts console, after you click Add
Authorization, you can configure an agency for a specific user or all users.
Generally, an agency named modelarts_agency_<Username>_Random ID is
created by default. In the Permissions area, you can select the preset permission
configuration or select the required policies. If both options cannot meet your
requirements, you can create an agency on the IAM management page (you need
to delegate ModelArts to access your resources), and then use an existing agency
instead of adding an agency on the Add Authorization page.

ModelArts associates multiple users with one agency. This means that if two users
need to configure the same agency, you do not need to create an agency for each
user. Instead, you only need to configure the same agency for the two users.

Figure 1-3 Mapping between users and agencies

NO TE

Each user can use ModelArts only after being associated with an agency. However, even if
the permissions assigned to the agency are insufficient, no error is reported when the API is
called. An error occurs only when the system uses unauthorized functions. For example, you
enable message notification when creating a training job. Message notification requires
SMN authorization. However, an error occurs only when messages need to be sent for the
training job. The system ignores some errors, and other errors may cause job failures. When
you implement permission minimization, ensure that you will still have sufficient
permissions for the required operations on ModelArts.

Strict Authorization

In strict authorization mode, explicit authorization by the account administrator is
required for IAM users to access ModelArts. The administrator can add the
required ModelArts permissions to common users through authorization policies.

In non-strict authorization mode, IAM users can use ModelArts without explicit
authorization. The administrator needs to configure the deny policy for IAM users
to prevent them from using some ModelArts functions.

The administrator can change the authorization mode on the Global
Configuration page.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 5

NO TICE

The strict authorization mode is recommended. In this mode, IAM users must be
authorized to use ModelArts functions. In this way, the permission scope of IAM
users can be accurately controlled, minimizing permissions granted to IAM users.

Managing Resource Access Using Workspaces
Workspace enables enterprise customers to split their resources into multiple
spaces that are logically isolated and to manage access to different spaces. As an
enterprise user, you can submit the request for enabling the workspace function to
your technical support manager.

After workspace is enabled, a default workspace is created. All resources you have
created are in this workspace. A workspace is like a ModelArts twin. You can
switch between workspaces in the upper left corner of the ModelArts console. Jobs
in different workspaces do not affect each other.

When creating a workspace, you must bind it to an enterprise project. Multiple
workspaces can be bound to the same enterprise project, but one workspace
cannot be bound to multiple enterprise projects. You can use workspaces for
refined restrictions on resource access and permissions of different users. The
restrictions are as follows:

● Users must be authorized to access specific workspaces (this must be
configured on the pages for creating and managing workspaces). This means
that access to AI assets such as datasets and algorithms can be managed
using workspaces.

● In the preceding permission authorization operations, if you set the scope to
enterprise projects, the authorization takes effect only for workspaces bound
to the selected projects.

NO TE

● Restrictions on workspaces and permission authorization take effect at the same time.
That is, a user must have both the permission to access the workspace and the
permission to create training jobs (the permission applies to this workspace) so that the
user can submit training jobs in this workspace.

● If you have enabled an enterprise project but have not enabled a workspace, all
operations are performed in the default enterprise project. Ensure that the permissions
on the required operations apply to the default enterprise project.

● The preceding restrictions do not apply to users who have not enabled any enterprise
project.

Summary
Key features of ModelArts permissions management:

● If you are an individual user, you do not need to consider fine-grained
permissions management. Your account has all permissions to use ModelArts
by default.

● All functions of ModelArts are controlled by IAM. You can use IAM
authorization to implement fine-grained permissions management for specific
users.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 6

● All users (including individual users) can use specific functions only after
agency authorization on ModelArts (Settings > Add Authorization).
Otherwise, unexpected errors may occur.

● If you have enabled the enterprise project function, you can also enable
ModelArts workspace and use both basic authorization and workspace for
refined permissions management.

1.2 Permission Management Mechanisms

1.2.1 IAM
This section describes the IAM permission configurations for all ModelArts
functions.

IAM Permissions
If no fine-grained authorization policy is configured for a user created by the
administrator, the user has all permissions of ModelArts by default. To control user
permissions, the administrator needs to add the user to a user group on IAM and
configure fine-grained authorization policies for the user group. In this way, the
user obtains the permissions defined in the policies before performing operations
on cloud service resources.

You can grant users permissions by using roles and policies.

● Roles are a type of coarse-grained authorization mechanism that defines
permissions related to user responsibilities. Only a limited number of service-
level roles are available. When using roles to grant permissions, you must also
assign other roles on which the permissions depend to take effect. Roles are
not ideal for fine-grained authorization and secure access control.

● Policies are a type of fine-grained authorization mechanism that defines
permissions required to perform operations on specific cloud resources under
certain conditions. This type of authorization is more flexible and ideal for
secure access control. For example, you can grant ECS users permissions that
only allow them to manage a certain type of ECS.

ModelArts does not support role-based authorization. It supports only policy-
based authorization.

Policy Structure

A policy consists of a version and one or more statements (indicating different
actions).

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 7

Figure 1-4 Policy structure

Policy Parameters

The following describes policy parameters. You can create custom policies by
specifying the parameters.

Table 1-2 Policy parameters

Parameter Description Value

Version Policy version 1.1: indicates policy-based access
control.

Statement:
authorizatio
n statement
of a policy

Effect Whether to
allow or deny
the
operations
defined in
the action

● Allow: indicates the operation is
allowed.

● Deny: indicates the operation is not
allowed.
NOTE

If the policy used to grant user
permissions contains both Allow and
Deny for the same action, Deny takes
precedence.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 8

Parameter Description Value

Action Operation to
be performed
on the
service

Format: "Service name:Resource
type:Action". Wildcard characters (*)
are supported, indicating all options.
Example:
modelarts:notebook:list: indicates the
permission to view a notebook
instance list. modelarts indicates the
service name, notebook indicates the
resource type, and list indicates the
operation.
View all actions of a service in its API
Reference.

Conditio
n

Condition for
a policy to
take effect,
including
condition
keys and
operators

Format: "Condition operator:{Condition
key:[Value 1,Value 2]}"
If you set multiple conditions, the
policy takes effect only when all the
conditions are met.
Example:
StringEndWithIfExists":
{"g:UserName":["specialCharacter"]}:
The statement is valid for users whose
names end with specialCharacter.

Resourc
e

Resources on
which a
policy takes
effect

Format: Service name:Region:Account
ID:Resource type:Resource path.
Wildcard characters (*) are supported,
indicating all resources.
NOTE

ModelArts authorization does not allow
you to specify a resource path.

ModelArts Resource Types

During policy-based authorization, the administrator can select the authorization
scope based on ModelArts resource types. The following table lists the resource
types supported by ModelArts:

Table 1-3 ModelArts resource types

Resource Type Description

notebook Notebook instances in DevEnviron

exemlProject ExeML projects

exemlProjectInf ExeML-powered real-time inference
service

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 9

Resource Type Description

exemlProjectTrain ExeML-powered training jobs

exemlProjectVersion ExeML project version

workflow Workflow

pool Dedicated resource pool

network Networking of a dedicated resource
pool

trainJob Training job

trainJobLog Runtime logs of a training job

trainJobInnerModel Preset model

trainJobVersion Version of a training job (supported by
old-version training jobs that will be
discontinued soon)

trainConfig Configuration of a training job
(supported by old-version training jobs
that will be discontinued soon)

tensorboard Visualization job of training results
(supported by old-version training jobs
that will be discontinued soon)

model Models

service Real-time service

nodeservice Edge service

workspace Workspace

dataset Dataset

dataAnnotation Dataset labels

aiAlgorithm Algorithm for training jobs

image Image

ModelArts Resource Permissions
For details, see "Permissions Policies and Supported Actions" in ModelArts API
Reference.

1.2.2 Agencies and Dependencies

Function Dependency
Function Dependency Policies

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 10

When using ModelArts to develop algorithms or manage training jobs, you are
required to use other Cloud services. For example, before submitting a training job,
select an OBS path for storing the dataset and logs, respectively. Therefore, when
configuring fine-grained authorization policies for a user, the administrator must
configure dependent permissions so that the user can use required functions.

NO TE

If you use ModelArts as the root user (default IAM user with the same name as the
account), the root user has all permissions by default.

Table 1-4 Basic configuration

Applicati
on
Scenario

Dependent
Service

Dependent
Policy

Supported Function

Global
configura
tion

IAM iam:users:listUs
ers

Obtain a user list. This action is
required by the administrator only.

Basic
function

IAM iam:tokens:ass
ume

(Mandatory) Use an agency to
obtain temporary authentication
credentials.

Table 1-5 Managing workspaces

Applicati
on
Scenario

Dependent
Service

Dependent
Policy

Supported Function

Workspac
e

IAM iam:users:listUs
ers

Authorize an IAM user to use a
workspace.

ModelArts modelarts:*:*de
lete*

Clear resources in a workspace
when deleting it.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 11

Table 1-6 Managing notebook instances

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

Lifecycle
managemen
t of
developmen
t
environment
instances

ModelA
rts

modelarts:notebook:cr
eate
modelarts:notebook:li
st
modelarts:notebook:g
et
modelarts:notebook:u
pdate
modelarts:notebook:d
elete
modelarts:notebook:st
art
modelarts:notebook:st
op
modelarts:notebook:u
pdateStopPolicy
modelarts:image:delet
e
modelarts:image:list
modelarts:image:creat
e
modelarts:image:get
modelarts:pool:list
modelarts:tag:list
modelarts:network:ge
t
aom:metric:get
aom:metric:list
aom:alarm:list

Start, stop, create, delete, and
update an instance.

Dynamically
mounting
storage

ModelA
rts

modelarts:notebook:li
stMountedStorages
modelarts:notebook:
mountStorage
modelarts:notebook:g
etMountedStorage
modelarts:notebook:u
mountStorage

Dynamically mount storage.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 12

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

OBS obs:bucket:ListAllMyB
uckets
obs:bucket:ListBucket

Image
managemen
t

ModelA
rts

modelarts:image:regis
ter
modelarts:image:listG
roup

Register and view an image
on the Image Management
page.

Saving an
image

SWR SWR Admin The SWR Admin policy
contains the maximum scope
of SWR permissions, which
can be used to:
● Save a running

development environment
instance as an image.

● Create a notebook instance
using a custom image.

Using the
SSH
function

ECS ecs:serverKeypairs:list
ecs:serverKeypairs:get
ecs:serverKeypairs:del
ete
ecs:serverKeypairs:cre
ate

Configure a login key for a
notebook instance.

Mounting
an SFS
Turbo file
system

SFS
Turbo

SFS Turbo FullAccess Read and write an SFS
directory as an IAM user.
Mount an SFS file system that
is not created by you to a
notebook instance using a
dedicated resource pool.

Viewing all
Instances

ModelA
rts

modelarts:notebook:li
stAllNotebooks

View development
environment instances of all
users on the ModelArts
management console. This
action is required by the
development environment
instance administrator.

IAM iam:users:listUsers

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 13

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

Local VS
Code plug-
in or
PyCharm
Toolkit

ModelA
rts

modelarts:notebook:li
stAllNotebooks
modelarts:trainJob:cre
ate
modelarts:trainJob:list
modelarts:trainJob:up
date
modelarts:trainJobVer
sion:delete
modelarts:trainJob:get
modelarts:trainJob:log
Export
modelarts:workspace:
getQuotas (This
policy is required if
the workspace
function is enabled.)

Access a notebook instance
from local VS Code and
submit training jobs.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 14

Application
Scenario

Depend
ent
Service

Dependent Policy Supported Function

OBS obs:bucket:ListAllMyb
uckets
obs:bucket:HeadBucke
t
obs:bucket:ListBucket
obs:bucket:GetBucket
Location
obs:object:GetObject
obs:object:GetObjectV
ersion
obs:object:PutObject
obs:object:DeleteObje
ct
obs:object:DeleteObje
ctVersion
obs:object:ListMultipa
rtUploadParts
obs:object:AbortMulti
partUpload
obs:object:GetObjectA
cl
obs:object:GetObjectV
ersionAcl
obs:bucket:PutBucket
Acl
obs:object:PutObjectA
cl
obs:object:ModifyObje
ctMetaData

IAM iam:projects:listProject
s

Obtain an IAM project list
through local PyCharm for
access configurations.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 15

Table 1-7 Managing training jobs

Application
Scenario

Dependent
Service

Dependent Policy Supported
Function

Training
manageme
nt

ModelArts modelarts:trainJob:*
modelarts:trainJobLog:*
modelarts:aiAlgorithm:*
modelarts:image:list

Create a training
job and view
training logs.

modelarts:workspace:getQuot
as

Obtain a
workspace quota.
This policy is
required if the
workspace
function is
enabled.

modelarts:tag:list Use Tag
Management
Service (TMS) in a
training job.

IAM iam:credentials:listCredentials
iam:agencies:listAgencies

Use the configured
agency
authorization.

SFS Turbo sfsturbo:shares:getShare
sfsturbo:shares:getAllShares

Use SFS Turbo in a
training job.

SWR swr:repository:listTags
swr:repository:getRepository
swr:repository:listRepositories

Use a custom
image to create a
training job.

SMN smn:topic:publish
smn:topic:list

Notify training job
status changes
through SMN.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 16

Application
Scenario

Dependent
Service

Dependent Policy Supported
Function

OBS obs:bucket:ListAllMybuckets
obs:bucket:HeadBucket
obs:bucket:ListBucket
obs:bucket:GetBucketLocation
obs:object:GetObject
obs:object:GetObjectVersion
obs:object:PutObject
obs:object:DeleteObject
obs:object:DeleteObjectVer-
sion
obs:object:ListMultipartUpload
Parts
obs:object:AbortMultipartUp-
load
obs:object:GetObjectAcl
obs:object:GetObjectVersio-
nAcl
obs:bucket:PutBucketAcl
obs:object:PutObjectAcl
obs:object:ModifyObjectMeta-
Data

Run a training job
using a dataset in
an OBS bucket.

Table 1-8 Using workflows

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Using a
dataset

ModelArts modelarts:dataset:getDataset
modelarts:dataset:createDataset
modelarts:dataset:createDatasetV
ersion
modelarts:dataset:createImportTa
sk
modelarts:dataset:updateDataset
modelarts:processTask:createProc
essTask
modelarts:processTask:getProcess
Task
modelarts:dataset:listDatasets

Use ModelArts
datasets in a
workflow.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 17

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
AI
application
s

ModelArts modelarts:model:list
modelarts:model:get
modelarts:model:create
modelarts:model:delete
modelarts:model:update

Manage
ModelArts AI
applications in a
workflow.

Deploying
a service

ModelArts modelarts:service:get
modelarts:service:create
modelarts:service:update
modelarts:service:delete
modelarts:service:getLogs

Manage
ModelArts real-
time services in a
workflow.

Training
jobs

ModelArts modelarts:trainJob:get
modelarts:trainJob:create
modelarts:trainJob:list
modelarts:trainJobVersion:list
modelarts:trainJobVersion:create
modelarts:trainJob:delete
modelarts:trainJobVersion:delete
modelarts:trainJobVersion:stop

Manage
ModelArts
training jobs in a
workflow.

Workspace ModelArts modelarts:workspace:get
modelarts:workspace:getQuotas

Use ModelArts
workspaces in a
workflow.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 18

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
data

OBS obs:bucket:ListAllMybuckets
(Obtaining a bucket list)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:ListBucket (Listing
objects in a bucket)
obs:bucket:GetBucketLocation
(Obtaining the bucket location)
obs:object:GetObject (Obtaining
object content and metadata)
obs:object:GetObjectVersion
(Obtaining object content and
metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing
a multipart task, uploading parts,
and merging parts)
obs:object:DeleteObject (Deleting
an object or batch deleting
objects)
obs:object:DeleteObjectVersion
(Deleting an object or batch
deleting objects)
obs:object:ListMultipartUpload-
Parts (Listing uploaded parts)
obs:object:AbortMultipartUpload
(Aborting multipart uploads)
obs:object:GetObjectAcl
(Obtaining an object ACL)
obs:object:GetObjectVersionAcl
(Obtaining an object ACL)
obs:bucket:PutBucketAcl
(Configuring a bucket ACL)
obs:object:PutObjectAcl
(Configuring an object ACL)

Use OBS data in a
workflow.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 19

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Executing
a workflow

IAM iam:users:listUsers (Obtaining
users)
iam:agencies:getAgency
(Obtaining details about a
specified agency)
iam:tokens:assume (Obtaining an
agency token)

Call other
ModelArts
services when the
workflow is
running.

Integrating
DLI

DLI dli:jobs:get (Obtaining job
details)
dli:jobs:list_all (Viewing a job list)
dli:jobs:create (Creating a job)

Integrate DLI into
a workflow.

Integrating
MRS

MRS mrs:job:get (Obtaining job
details)
mrs:job:submit (Creating and
executing a job)
mrs:job:list (Viewing a job list)
mrs:job:stop (Stopping a job)
mrs:job:batchDelete (Batch
deleting jobs)
mrs:file:list (Viewing a file list)

Integrate MRS
into a workflow.

Table 1-9 Managing AI applications

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
AI
application
s

SWR swr:repository:deleteRepository
swr:repository:deleteTag
swr:repository:getRepository
swr:repository:listTags

Import a model
from a custom
image.
Use a custom
engine when
importing a
model from OBS.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 20

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

OBS obs:bucket:ListAllMybuckets
(Obtaining a bucket list)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:ListBucket (Listing
objects in a bucket)
obs:bucket:GetBucketLocation
(Obtaining the bucket location)
obs:object:GetObject (Obtaining
object content and metadata)
obs:object:GetObjectVersion
(Obtaining object content and
metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing
a multipart task, uploading parts,
and merging parts)
obs:object:DeleteObject (Deleting
an object or batch deleting
objects)
obs:object:DeleteObjectVersion
(Deleting an object or batch
deleting objects)
obs:object:ListMultipartUpload-
Parts (Listing uploaded parts)
obs:object:AbortMultipartUpload
(Aborting multipart uploads)
obs:object:GetObjectAcl
(Obtaining an object ACL)
obs:object:GetObjectVersionAcl
(Obtaining an object ACL)
obs:bucket:PutBucketAcl
(Configuring a bucket ACL)
obs:object:PutObjectAcl
(Configuring an object ACL)

Import a model
from a template.
Specify an OBS
path for model
conversion.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 21

Table 1-10 Managing service deployment

Applicatio
n Scenario

Depende
nt Service

Dependent Policy Supported
Function

Real-time
services

LTS lts:logs:list (Obtaining the log
list)

Show LTS logs.

OBS obs:bucket:GetBucketPolicy
(Obtaining a bucket policy)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:ListAllMyBuckets
(Obtaining a bucket list)
obs:bucket:PutBucketPolicy
(Configuring a bucket policy)
obs:bucket:DeleteBucketPolicy
(Deleting a bucket policy)

Mount external
volumes to a
container when
services are
running.

Batch
services

OBS obs:object:GetObject (Obtaining
object content and metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing
a multipart task, uploading parts,
and merging parts)
obs:bucket:CreateBucket
(Creating a bucket)
obs:bucket:ListBucket (Listing
objects in a bucket)
obs:bucket:ListAllMyBuckets
(Obtaining a bucket list)

Create batch
services and
perform batch
inference.

Edge
services

CES ces:metricData:list: (Obtaining
metric data)

View monitoring
metrics.

IEF ief:deployment:delete (Deleting a
deployment)

Manage edge
services.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 22

Table 1-11 Managing datasets

Applicati
on
Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
datasets
and labels

OBS obs:bucket:ListBucket (Listing
objects in a bucket)
obs:object:GetObject (Obtaining
object content and metadata)
obs:object:PutObject (Uploading
objects using PUT method,
uploading objects using POST
method, copying objects,
appending an object, initializing a
multipart task, uploading parts,
and merging parts)
obs:object:DeleteObject (Deleting
an object or batch deleting
objects)
obs:bucket:HeadBucket
(Obtaining bucket metadata)
obs:bucket:GetBucketAcl
(Obtaining a bucket ACL)
obs:bucket:PutBucketAcl
(Configuring a bucket ACL)
obs:bucket:GetBucketPolicy
(Obtaining a bucket policy)
obs:bucket:PutBucketPolicy
(Configuring a bucket policy)
obs:bucket:DeleteBucketPolicy
(Deleting a bucket policy)
obs:bucket:PutBucketCORS
(Configuring or deleting CORS
rules of a bucket)
obs:bucket:GetBucketCORS
(Obtaining the CORS rules of a
bucket)
obs:object:PutObjectAcl
(Configuring an object ACL)

Manage datasets
in OBS.
Label OBS data.
Create a data
management job.

Managing
table
datasets

DLI dli:database:displayAllDatabases
dli:database:displayAllTables
dli:table:describe_table

Manage DLI data
in a dataset.

Managing
table
datasets

DWS dws:openAPICluster:list
dws:openAPICluster:getDetail

Manage DWS
data in a dataset.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 23

Applicati
on
Scenario

Depende
nt Service

Dependent Policy Supported
Function

Managing
table
datasets

MRS mrs:job:submit
mrs:job:list
mrs:cluster:list
mrs:cluster:get

Manage MRS
data in a dataset.

Auto
labeling

ModelArts modelarts:service:list
modelarts:model:list
modelarts:model:get
modelarts:model:create
modelarts:trainJobInnerModel:list
modelarts:workspace:get
modelarts:workspace:list

Enable auto
labeling.

Team
labeling

IAM iam:projects:listProjects
(Obtaining tenant projects)
iam:users:listUsers (Obtaining
users)
iam:agencies:createAgency
(Creating an agency)
iam:quotas:listQuotasForProject
(Obtaining the quotas of a
project)

Manage labeling
teams.

Table 1-12 Managing resources

Applicatio
n
Scenario

Dependen
t Service

Dependent Policy Supported
Function

Managing
resource
pools

BSS bss:coupon:view
bss:order:view
bss:balance:view
bss:discount:view
bss:renewal:view
bss:bill:view
bss:contract:update
bss:order:pay
bss:unsubscribe:update
bss:renewal:update
bss:order:update

Create, renew,
and unsubscribe
from a resource
pool. Dependent
permissions must
be configured in
the IAM project
view.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 24

Applicatio
n
Scenario

Dependen
t Service

Dependent Policy Supported
Function

ECS ecs:availabilityZones:list Show AZs.
Dependent
permissions must
be configured in
the IAM project
view.

Network
managem
ent

VPC vpc:routes:create
vpc:routes:list
vpc:routes:get
vpc:routes:delete
vpc:peerings:create
vpc:peerings:accept
vpc:peerings:get
vpc:peerings:delete
vpc:routeTables:update
vpc:routeTables:get
vpc:routeTables:list
vpc:vpcs:create
vpc:vpcs:list
vpc:vpcs:get
vpc:vpcs:delete
vpc:subnets:create
vpc:subnets:get
vpc:subnets:delete
vpcep:endpoints:list
vpcep:endpoints:create
vpcep:endpoints:delete
vpcep:endpoints:get
vpc:ports:create
vpc:ports:get
vpc:ports:update
vpc:ports:delete
vpc:networks:create
vpc:networks:get
vpc:networks:update
vpc:networks:delete

Create and delete
ModelArts
networks, and
interconnect VPCs.
Dependent
permissions must
be configured in
the IAM project
view.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 25

Applicatio
n
Scenario

Dependen
t Service

Dependent Policy Supported
Function

SFS Turbo sfsturbo:shares:addShareNic
sfsturbo:shares:deleteShareNic
sfsturbo:shares:showShareNic
sfsturbo:shares:listShareNics

Interconnect your
network with SFS
Turbo. Dependent
permissions must
be configured in
the IAM project
view.

Edge
resource
pool

IEF ief:node:list
ief:group:get
ief:application:list
ief:application:get
ief:node:listNodeCert
ief:node:get
ief:IEFInstance:get
ief:deployment:list
ief:group:listGroupInstanceState
ief:IEFInstance:list
ief:deployment:get
ief:group:list

Add, delete,
modify, and
search for edge
pools

Agency authorization
To simplify operations when you use ModelArts to run jobs, certain operations are
automatically performed on the ModelArts backend, for example, downloading
the datasets in an OBS bucket to a workspace before a training job is started and
dumping training job logs to the OBS bucket.

ModelArts does not save your token authentication credentials. Before performing
operations on your resources (such as OBS buckets) in a backend asynchronous
job, you are required to explicitly authorize ModelArts through an IAM agency.
ModelArts will use the agency to obtain a temporary authentication credential for
performing operations on your resources. For details, see Adding Authorization.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 26

Figure 1-5 Agency authorization

As shown in Figure 1-5, after authorization is configured on ModelArts, ModelArts
uses the temporary credential to access and operate your resources, relieving you
from some complex and time-consuming operations. The agency credential will
also be synchronized to your jobs (including notebook instances and training jobs).
You can use the agency credential to access your resources in the jobs.

You can use either of the following methods to authorize ModelArts using an
agency:

One-click authorization

ModelArts provides one-click automatic authorization. You can quickly configure
agency authorization on the Global Configuration page of ModelArts. Then,
ModelArts will automatically create an agency for you and configure it in
ModelArts.

In this mode, the authorization scope is specified based on the preset system
policies of dependent services to ensure sufficient permissions for using services.
The created agency has almost all permissions of dependent services. If you want
to precisely control the scope of permissions granted to an agency, use the second
method.

Custom authorization

The administrator creates different agency authorization policies for different
users in IAM, and configures the created agency for ModelArts users. When
creating an agency for an IAM user, the administrator specifies the minimum
permissions for the agency based on the user's permissions to control the
resources that the user can access when they use ModelArts.

Risks in Unauthorized Operations

The agency authorization of a user is independent. Theoretically, the agency
authorization scope of a user can be beyond the authorization scope of the
authorization policy configured for the user group. Any improper configuration will
result in unauthorized operations.

To prevent unauthorized operations, only a tenant administrator is allowed to
configure agencies for users in the ModelArts global configuration to ensure the
security of agency authorization.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 27

Minimal Agency Authorization

When configuring agency authorization, an administrator must strictly control the
authorization scope.

ModelArts asynchronously and automatically performs operations such as job
preparation and clearing. The required agency authorization is within the basic
authorization scope. If you use only some functions of ModelArts, the
administrator can filter out the basic permissions that are not used according to
the agency authorization configuration. Conversely, if you need to obtain resource
permissions beyond the basic authorization scope in a job, the administrator can
add new permissions to the agency authorization configuration. In a word, the
agency authorization scope must be minimized and customized based on service
requirements.

Basic Agency Authorization Scope

To customize the permissions for an agency, select permissions based on your
service requirements.

Table 1-13 Basic agency authorization for a development environment

Applica
tion
Scenari
o

Depende
nt Service

Agency Authorization Description Conf
igur
atio
n
Sug
gest
ion

JupyterL
ab

OBS obs:object:DeleteObject
obs:object:GetObject
obs:object:GetObjectVersion
obs:bucket:CreateBucket
obs:bucket:ListBucket
obs:bucket:ListAllMyBuckets
obs:object:PutObject
obs:bucket:GetBucketAcl
obs:bucket:PutBucketAcl
obs:bucket:PutBucketCORS

Use OBS to
upload and
download data in
JupyterLab
through
ModelArts
notebook.

Reco
mm
end
ed

Develop
ment
environ
ment
monitori
ng

AOM aom:alarm:put Call the AOM API
to obtain
monitoring data
and events of
notebook
instances and
display them in
ModelArts
notebook.

Reco
mm
end
ed

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 28

Table 1-14 Basic agency authorization for training jobs

Applicati
on
Scenario

Dependent
Service

Agency Authorization Description

Training
jobs

OBS obs:bucket:ListBucket
obs:object:GetObject
obs:object:PutObject

Download data,
models, and code
before starting a
training job.
Upload logs and
models when a
training job is
running.

Table 1-15 Basic agency authorization for deploying services

Applicat
ion
Scenari
o

Dependen
t Service

Agency Authorization Description

Real-
time
services

LTS lts:groups:create
lts:groups:list
lts:topics:create
lts:topics:delete
lts:topics:list

Configure LTS for
reporting logs of
real-time services.

Batch
services

OBS obs:bucket:ListBucket
obs:object:GetObject
obs:object:PutObject

Run a batch
service.

Edge
services

IEF ief:deployment:list
ief:deployment:create
ief:deployment:update
ief:deployment:delete
ief:node:createNodeCert
ief:iefInstance:list
ief:node:list

Deploy an edge
service using IEF.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 29

Table 1-16 Basic agency authorization for managing data

Applica
tion
Scenari
o

Dependen
t Service

Agency Authorization Description

Dataset
and
data
labeling

OBS obs:object:GetObject
obs:object:PutObject
obs:object:DeleteObject
obs:object:PutObjectAcl
obs:bucket:ListBucket
obs:bucket:HeadBucket
obs:bucket:GetBucketAcl
obs:bucket:PutBucketAcl
obs:bucket:GetBucketPolicy
obs:bucket:PutBucketPolicy
obs:bucket:DeleteBucketPolicy
obs:bucket:PutBucketCORS
obs:bucket:GetBucketCORS

Manage datasets
in an OBS bucket.

Labelin
g data

ModelArts
inference

modelarts:service:get
modelarts:service:create
modelarts:service:update

Perform auto
labeling based on
ModelArts
inference.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 30

Table 1-17 Basic agency authorization for managing dedicated resource pools

Applicati
on
Scenario

Depende
nt
Service

Agency Authorization Description

Network
managem
ent (New
version)

VPC vpc:routes:create
vpc:routes:list
vpc:routes:get
vpc:routes:delete
vpc:peerings:create
vpc:peerings:accept
vpc:peerings:get
vpc:peerings:delete
vpc:routeTables:update
vpc:routeTables:get
vpc:routeTables:list
vpc:vpcs:create
vpc:vpcs:list
vpc:vpcs:get
vpc:vpcs:delete
vpc:subnets:create
vpc:subnets:get
vpc:subnets:delete
vpcep:endpoints:list
vpcep:endpoints:create
vpcep:endpoints:delete
vpcep:endpoints:get
vpc:ports:create
vpc:ports:get
vpc:ports:update
vpc:ports:delete
vpc:networks:create
vpc:networks:get
vpc:networks:update
vpc:networks:delete

Create and delete
ModelArts
networks, and
interconnect VPCs.
Dependent
permissions must
be configured in
the IAM project
view.

SFS
Turbo

sfsturbo:shares:addShareNic
sfsturbo:shares:deleteShareNic
sfsturbo:shares:showShareNic
sfsturbo:shares:listShareNics

Interconnect your
network with SFS
Turbo. Dependent
permissions must
be configured in
the IAM project
view.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 31

Applicati
on
Scenario

Depende
nt
Service

Agency Authorization Description

Managing
resource
pools

ECS ecs:availabilityZones:list Show AZs.
Dependent
permissions must
be configured in
the IAM project
view.

1.2.3 Workspace
ModelArts allows you to create multiple workspaces to develop algorithms and
manage and deploy models for different service objectives. In this way, the
development outputs of different applications are allocated to different
workspaces for simplified management.

Workspace supports the following types of access control:

● PUBLIC: publicly accessible to tenants (including both tenant accounts and all
their user accounts)

● PRIVATE: accessible only to the creator and tenant accounts
● INTERNAL: accessible to the creator, tenant accounts, and specified IAM user

accounts. When Authorization Type is set to INTERNAL, specify one or more
accessible IAM user accounts.

A default workspace is allocated to each IAM project of each account. The access
control of the default workspace is PUBLIC.

Workspace access control allows the access of only certain users. This function can
be used in the following scenarios:

● Education: A teacher allocates an INTERNAL workspace to each student and
allows the workspaces to be accessed only by specified students. In this way,
students can separately perform experiments on ModelArts.

● Enterprises: An administrator creates a workspace for production tasks and
allows only O&M personnel to use the workspace, and creates a workspace
for routine debugging and allows only developers to use the workspace. In
this way, different enterprise roles can use resources only in a specified
workspace.

As an enterprise user, you can submit the request for enabling the workspace
function to your technical support.

1.3 Configuration Practices in Typical Scenarios

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 32

1.3.1 Assigning Permissions to Individual Users for Using
ModelArts

Certain ModelArts functions require access to Object Storage Service (OBS),
Software Repository for Container (SWR), and Intelligent EdgeFabric (IEF). Before
using ModelArts, your account must be authorized to access these services.
Otherwise, these functions will be unavailable.

Constraints
● Only a tenant account can perform agency authorization to authorize the

current account or all IAM users under the current account.
● Multiple IAM users or accounts can use the same agency.
● A maximum of 50 agencies can be created under an account.
● If you use ModelArts for the first time, add an agency. Generally, common

user permissions are sufficient for your requirements. You can configure
permissions for refined permissions management.

● If you have not been authorized, ModelArts will display a message indicating
that you have not been authorized when you access the Add Authorization
page. In this case, contact your administrator to add authorization.

Adding Authorization
1. Log in to the ModelArts management console. In the left navigation pane,

choose Settings. The Global Configuration page is displayed.
2. Click Add Authorization. On the Add Authorization page that is displayed,

configure the parameters.

Table 1-18 Parameters

Parameter Description

Authorized User Options: IAM user, Federated user, Agency, and All users
● IAM user: You can use a tenant account to create IAM users and assign

permissions for specific resources. Each IAM user has their own identity
credentials (password and access keys) and uses cloud resources based
on assigned permissions.

● Federated user: A federated user is also called a virtual enterprise user.
● Agency: You can create agencies in IAM.
● All users: If you select this option, the agency permissions will be

granted to all IAM users under the current account, including those
created in the future. For individual users, choose All users.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 33

Parameter Description

Authorized To This parameter is not displayed when Authorized User is set to All users.
● IAM user: Select an IAM user and configure an agency for the IAM

user.

Figure 1-6 Selecting an IAM user

● Federated user: Enter the username or user ID of the target federated
user.

Figure 1-7 Selecting a federated user

● Agency: Select an agency name. You can use account A to create an
agency and configure the agency for account B. When using account B,
you can switch the role in the upper right corner of the console to
account A and use the agency permissions of account A.

Figure 1-8 Switch Role

Agency ● Use existing: If there are agencies in the list, select an available one to
authorize the selected user. Click the drop-down arrow next to an
agency name to view its permission details.

● Add agency: If there is no available agency, create one. If you use
ModelArts for the first time, select Add agency.

Add agency >
Agency Name

The system automatically creates a changeable agency name.

Add agency >
Permissions >
Common User

Common User provides the permissions to use all basic ModelArts
functions. For example, you can access data, and create and manage
training jobs. Select this option generally.
Click View permissions to view common user permissions.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 34

Parameter Description

Add agency >
Permissions >
Custom

If you need refined permissions management, select Custom to flexibly
assign permissions to the created agency. You can select permissions from
the permission list as required.

3. Click Create.

Viewing Authorized Permissions
You can view the configured authorizations on the Global Configuration page.
Click View Permissions in the Authorization Content column to view the
permission details.

Figure 1-9 View Permissions

Figure 1-10 View Permissions

1.3.2 Separately Assigning Permissions to Administrators and
Developers

In small- and medium-sized teams, administrators need to globally control
ModelArts resources, and developers only need to focus on their own instances. By
default, a developer account does not have the te_admin permission. The tenant
account must configure the required permissions. This section uses notebook as an
example to describe how to assign different permissions to administrators and
developers through custom policies.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 35

Scenarios
To develop a project using notebook, administrators need full control permissions
for using ModelArts dedicated resource pools, and access and operation
permissions on all notebook instances.

To use development environments, developers only need operation permissions for
using their own instances and dependent services. They do not need to perform
operations on ModelArts dedicated resource pools or view notebook instances of
other users.

Figure 1-11 Account relationships

Configuring Permissions for an Administrator
Assign full control permissions to administrators for using ModelArts dedicated
resource pools and all notebook instances. The procedure is as follows:

Step 1 Use a tenant account to create an administrator user group
ModelArts_admin_group and add administrator accounts to
ModelArts_admin_group.

Step 2 Create a custom policy.

1. Log in to the management console using an administrator account, hover
over your username in the upper right corner, and click Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. Create custom policy 1 and assign IAM and OBS permissions to the user. In
the navigation pane of the IAM console, choose Permissions > Policies/Roles.
Click Create Custom Policy in the upper right corner. On the displayed page,
enter Policy1_IAM_OBS for Policy Name, select JSON for Policy View,
configure the policy content, and click OK.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 36

Figure 1-12 Custom policy 1

The custom policy Policy1_IAM_OBS is as follows, which grants IAM and OBS
operation permissions to the user. You can directly copy and paste the
content.
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:users:listUsers",
 "iam:projects:listProjects",
 "obs:object:PutObject",
 "obs:object:GetObject",
 "obs:object:GetObjectVersion",
 "obs:bucket:HeadBucket",
 "obs:object:DeleteObject",
 "obs:bucket:CreateBucket",
 "obs:bucket:ListBucket"
]
 }
]
}

3. Repeat Step 2.2 to create custom policy 2 and grant the user the permissions
to perform operations on dependent services ECS, SWR, MRS, and SMN as
well as ModelArts. Set Policy Name to Policy2_AllowOperation and Policy
View to JSON, configure the policy content, and click OK.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 37

The custom policy Policy2_AllowOperation is as follows, which grants the
user the permissions to perform operations on dependent services ECS, SWR,
MRS, and SMN as well as ModelArts. You can directly copy and paste the
content.
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:serverKeypairs:list",
 "ecs:serverKeypairs:get",
 "ecs:serverKeypairs:delete",
 "ecs:serverKeypairs:create",
 "swr:repository:getNamespace",
 "swr:repository:listNamespaces",
 "swr:repository:deleteTag",
 "swr:repository:getRepository",
 "swr:repository:listTags",
 "swr:instance:createTempCredential",
 "mrs:cluster:get",
 "modelarts:*:*"
]
 }
]
}

Step 3 Grant the policy created in Step 2 to the administrator group
ModelArts_admin_group.

1. In the navigation pane of the IAM console, choose User Groups. On the User
Groups page, locate the row that contains ModelArts_admin_group, click
Authorize in the Operation column, and select Policy1_IAM_OBS and
Policy2_AllowOperation. Click Next.

Figure 1-13 Select Policy/Role

2. Specify the scope as All resources and click OK.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 38

Figure 1-14 Select Scope

Step 4 Configure agent-based ModelArts access authorization for an administrator to
allow ModelArts to access dependent services such as OBS.

1. Log in to the ModelArts management console using a tenant account. In the
navigation pane, choose Settings. The Global Configuration page is
displayed.

2. Click Add Authorization. On the Add Authorization page, set Authorized
User to IAM user, select an administrator account for Authorized To, select
Add agency, and select Common User for Permissions. Permissions control is
not required for administrators, so use default setting Common User.

Figure 1-15 Configuring authorization for an administrator

3. Click Create.

Step 5 Test administrator permissions.

1. Log in to the ModelArts management console as the administrator. On the
login page, ensure that IAM User Login is selected.
Change the password as prompted upon the first login.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 39

2. In the navigation pane of the ModelArts management console, choose
Dedicated Resource Pools and click Create. If the console does not display a
message indicating insufficient permissions, the permissions have been
assigned to the administrator.

----End

Configuring Permissions for a Developer
Use IAM for fine-grained control of developer permissions. The procedure is as
follows:

Step 1 Use a tenant account to create a developer user group user_group and add
developer accounts to user_group.

Step 2 Create a custom policy.

1. Log in to the management console using a tenant account, hover over your
username in the upper right corner, and click Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. Create custom policy 3 to prevent users from performing operations on
ModelArts dedicated resource pools and viewing notebook instances of other
users.
In the navigation pane of the IAM console, choose Permissions > Policies/
Roles. Click Create Custom Policy in the upper right corner. On the displayed
page, enter Policy3_DenyOperation for Policy Name, select JSON for Policy
View, configure the policy content, and click OK.
The custom policy Policy3_DenyOperation is as follows. You can copy and
paste the content.
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "deny",
 "Action": [
 "modelarts:pool:create",
 "modelarts:pool:update",
 "modelarts:pool:delete",
 "modelarts:notebook:listAllNotebooks"
]

 }
]
}

Step 3 Grant the custom policy to the developer user group user_group.

1. In the navigation pane of the IAM console, choose User Groups. On the User
Groups page, locate the row that contains user_group, click Authorize in the
Operation column, and select Policy1_IAM_OBS, Policy2_AllowOperation,
and Policy3_DenyOperation. Click Next.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 40

Figure 1-16 Select Policy/Role

2. Specify the scope as All resources and click OK.

Figure 1-17 Select Scope

Step 4 Configure agent-based ModelArts access authorization for a developer to allow
ModelArts to access dependent services such as OBS.

1. Log in to the ModelArts management console using a tenant account. In the
navigation pane, choose Settings. The Global Configuration page is
displayed.

2. Click Add Authorization. On the Add Authorization page, set Authorized
User to IAM user, select a developer account for Authorized To, add an
agency ma_agency_develop_user, set Permissions to Custom, and select
OBS Administrator. Developers only need OBS authorization to allow
developers to access OBS when using notebook.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 41

Figure 1-18 Configuring authorization for a developer

3. Click Create.
4. On the Global Configuration page, click Add Authorization again. On the

Add Authorization page that is displayed, configure an agency for other
developer users.
On the Add Authorization page, set Authorized User to IAM user, select a
developer account for Authorized To, and select the existing agency
ma_agency_develop_user created before.

Step 5 Test developer permissions.

1. Log in to the ModelArts management console as an IAM user in user_group.
On the login page, ensure that IAM User Login is selected.
Change the password as prompted upon the first login.

2. In the navigation pane of the ModelArts management console, choose
Dedicated Resource Pools and click Create. If the console does not display a
message indicating insufficient permissions, the permissions have been
assigned to the developer.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 42

Figure 1-19 Insufficient permissions

----End

1.3.3 Viewing the Notebook Instances of All IAM Users Under
One Tenant Account

Any IAM user granted with the listAllNotebooks and listUsers permissions can
click View all on the notebook page to view the instances of all users in the
current IAM project.

NO TE

Users granted with these permissions can also access OBS and SWR of all users in the
current IAM project.

Assigning the Required Permissions
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
create two policies.
Policy 1: Create a policy that allows users to view all notebook instances of an
IAM project, as shown in Figure 1-20.
– Policy Name: Enter a custom policy name, for example, Viewing all

notebook instances.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:notebook:listAllNotebooks, and default resources.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 43

Figure 1-20 Creating a custom policy

Policy 2: Create a policy that allows users to view all users of an IAM project.
– Policy Name: Enter a custom policy name, for example, Viewing all

users of the current IAM project.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, Identity and Access Management,

iam:users:listUsers, and default resources.
3. In the navigation pane, choose User Groups. On the User Groups page,

locate the row containing the target user group and click Authorize in the
Operation column. On the Authorize User Group page, select the custom
policy created in 2 and click Next. Then, select the scope and click OK.
After the configuration, all users in the user group have the permission to
view all notebook instances created by users in the user group.
If no user group is available, create one, add users to it through user group
management, and configure authorization for the user group. If the target
user is not in a user group, add the user to a user group through user group
management.

Enabling an IAM User to Start Other User's Notebook Instance

If an IAM user wants to access another IAM user's notebook instance through
remote SSH, they need to update the SSH key pair to their own. Otherwise, error
ModelArts.6786 will be reported. For details about how to update a key pair, see
Modifying the SSH Configuration for a Notebook Instance.

ModelArts.6789: Failed to find SSH key pair KeyPair-xxx on the ECS key pair page.
Update the key pair and try again later.

1.3.4 Logging In to a Training Container Using Cloud Shell

Application Scenarios

You can use Cloud Shell provided by the ModelArts console to log in to a running
training container.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 44

https://support.huaweicloud.com/eu/devtool-modelarts/modelarts_05_0369.html

Constraints
You can use Cloud Shell to log in to a running training container using a dedicated
resource pool.

Figure 1-21 Selecting a dedicated resource pool when creating a training job

Figure 1-22 A running training job

Preparation: Assigning the Cloud Shell Permission to an IAM User
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
configure the following parameters.
– Policy Name: Enter a custom policy name, for example, Using Cloud

Shell to log in to a running training container.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:trainJob:exec, and default resources.

Figure 1-23 Creating a custom policy

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 45

3. In the navigation pane, choose User Groups. Then, click Authorize in the
Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.
If no user group is available, create one, add users to it through user group
management, and configure authorization for the user group. If the target
user is not in a user group, add the user to a user group through user group
management.

Using Cloud Shell
1. Configure parameters based on Preparation: Assigning the Cloud Shell

Permission to an IAM User.
2. On the ModelArts console, choose Training Management > Training Jobs.

Go to the details page of the target training job and log in to the training
container on the Cloud Shell tab.
Verify that the login is successful, as shown in the following figure.

Figure 1-24 Cloud Shell

1.3.5 Prohibiting a User from Using a Public Resource Pool
This section describes how to control the ModelArts permissions of a user so that
the user is not allowed to use a public resource pool to create training jobs, create
notebook instances, or deploy inference services.

Context

Through permission control, ModelArts dedicated resource pool users can be
prohibited from using a public resource pool to create training jobs, create
notebook instances, or deploy inference services.

To control the permissions, configure the following permission policy items:

● modelarts:notebook:create: allows you to create a notebook instance.
● modelarts:trainJob:create: allows you to create a training job.
● modelarts:service:create: allows you to create an inference service.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 46

Procedure
1. Log in to the management console as a tenant user, hover the cursor over

your username in the upper right corner, and choose Identity and Access
Management from the drop-down list to switch to the IAM management
console.

2. In the navigation pane, choose Permissions > Policies/Roles. On the Policies/
Roles page, click Create Custom Policy in the upper right corner, configure
parameters, and click OK.
– Policy Name: Configure the policy name.
– Policy View: Select Visual editor or JSON.
– Policy Content: Select Deny. In Select service, search for ModelArts and

select it. In ReadWrite under Actions, search for
modelarts:trainJob:create, modelarts:notebook:create, and
modelarts:service:create and select them. All: Retain the default setting.
In Add request condition, click Add Request Condition. In the displayed
dialog box, set Condition Key to modelarts:poolType, Operator to
StringEquals, and Value to public.
The policy content in JSON view is as follows:
{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "modelarts:trainJob:create",
 "modelarts:notebook:create",
 "modelarts:service:create"
],
 "Condition": {
 "StringEquals": {
 "modelarts:poolType": [
 "public"
]
 }
 }
 }
]
}

3. In the navigation pane, choose User Groups. On the User Groups page,
locate the row containing the target user group and click Authorize in the
Operation column. On the Authorize User Group page, select the custom
policy created in 2 and click Next. Then, select the scope and click OK.
After the configuration, all users in the user group have the permission to
view all notebook instances created by users in the user group.
If no user group is available, create one, add users to it through user group
management, and configure authorization for the user group. If the target
user is not in a user group, add the user to a user group through user group
management.

4. Add the policy to the user's agency authorization. This prevents the user from
breaking the permission scope through a token on the tenant plane.
In the navigation pane, choose Agencies. Locate the agency used by the user
group on ModelArts and click Modify in the Operation column. On the
Permissions tab page, click Authorize, select the created custom policy, and
click Next. Select the scope for authorization and click OK.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 47

Verification
Log in to the ModelArts console as an IAM user, choose Training Management >
Training Jobs, and click Create Training Job. On the page for creating a training
job, only a dedicated resource pool can be selected for Resource Pool.

Log in to the ModelArts console as an IAM user, choose DevEnviron > Notebook,
and click Create. On the page for creating a notebook instance, only a dedicated
resource pool can be selected for Resource Pool.

Log in to the ModelArts console as an IAM user, choose Service Deployment >
Real-Time Services, and click Deploy. On the page for service deployment, only a
dedicated resource pool can be selected for Resource Pool.

ModelArts
Best Practices 1 Permissions Management

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 48

2 Model Development (Custom
Algorithms in Training Jobs of the New

Version)

2.1 Using a Custom Algorithm to Build a Handwritten
Digit Recognition Model

This section describes how to modify a local custom algorithm to train and deploy
models on ModelArts.

Scenarios

This case describes how to use PyTorch 1.8 to recognize handwritten digit images.
An official MNIST dataset is used in this case.

Through this case, you can learn how to train jobs, deploy an inference model, and
perform prediction on ModelArts.

Process

Before performing the following operations, complete necessary operations. For
details, see Preparations.

1. Step 1 Prepare the Training Data: Download the MNIST dataset.
2. Step 2 Prepare Training Files and Inference Files: Write training and

inference code.
3. Step 3 Create an OBS Bucket and Upload Files to OBS: Create an OBS

bucket and folder, and upload the dataset, training script, inference script, and
inference configuration file to OBS.

4. Step 4 Create a Training Job: Train a model.
5. Step 5 Deploy the Model for Inference: Import the trained model to

ModelArts, create an AI application, and deploy the AI application as a real-
time service.

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 49

6. Step 6 Perform Prediction: Upload a handwritten digit image and send an
inference request to obtain the inference result.

7. Step 7 Release Resources: Stop the service and delete the data in OBS to
stop billing.

Preparations
● You have registered a Huawei ID and enabled Huawei Cloud services, and the

account is not in arrears or frozen.
● You have configured the agency-based authorization.

Certain ModelArts functions require access to OBS, SWR, and IEF. Before using
ModelArts, ensure your account has been authorized to access these services.

a. Log in to the ModelArts console using your Huawei Cloud account. In the
navigation pane on the left, choose Settings. Then, on the Global
Configuration page, click Add Authorization.

b. On the Add Authorization page that is displayed, set required
parameters as follows:
Authorized User: Select All users.
Agency: Select Add agency.
Permissions: Select Common User.
Select "I have read and agree to the ModelArts Service Statement", and
click Create.

Figure 2-1 Configuring the agency-based authorization

c. After the configuration is complete, view the agency configurations of
your account on the Global Configuration page.

Figure 2-2 Viewing agency configurations

Step 1 Prepare the Training Data
An MNIST dataset downloaded from the MNIST official website is used in this
case. Ensure that the four files are all downloaded.

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 50

http://yann.lecun.com/exdb/mnist/

Figure 2-3 MNIST dataset

● train-images-idx3-ubyte.gz: compressed package of the training set, which
contains 60,000 samples.

● train-labels-idx1-ubyte.gz: compressed package of the training set labels,
which contains the labels of the 60,000 samples

● t10k-images-idx3-ubyte.gz: compressed package of the validation set, which
contains 10,000 samples.

● t10k-labels-idx1-ubyte.gz: compressed package of the validation set labels,
which contains the labels of the 10,000 samples

NO TE

If you are asked to enter the login information after you click the MNIST official website
link, copy and paste this link in the address box of your browser: http://yann.lecun.com/
exdb/mnist/

The login information is required when you open the link in HTTPS mode, which is not
required if you open the link in HTTP mode.

Step 2 Prepare Training Files and Inference Files
In this case, ModelArts provides the training script, inference script, and inference
configuration file.

NO TE

When pasting code from a .py file, create a .py file. Otherwise, the error message
"SyntaxError: 'gbk' codec can't decode byte 0xa4 in position 324: illegal multibyte sequence"
may be displayed.

Create the training script train.py on the local host. The content is as follows:

base on https://github.com/pytorch/examples/blob/main/mnist/main.py

from __future__ import print_function

import os
import gzip
import codecs
import argparse
from typing import IO, Union

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR

import shutil

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 51

Define a network model.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.dropout1 = nn.Dropout(0.25)
 self.dropout2 = nn.Dropout(0.5)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = self.dropout1(x)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.dropout2(x)
 x = self.fc2(x)
 output = F.log_softmax(x, dim=1)
 return output

Train the model. Set the model to the training mode, load the training data, calculate the loss function,
and perform gradient descent.
def train(args, model, device, train_loader, optimizer, epoch):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 output = model(data)
 loss = F.nll_loss(output, target)
 loss.backward()
 optimizer.step()
 if batch_idx % args.log_interval == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.item()))
 if args.dry_run:
 break

Validate the model. Set the model to the validation mode, load the validation data, and calculate the loss
function and accuracy.
def test(model, device, test_loader):
 model.eval()
 test_loss = 0
 correct = 0
 with torch.no_grad():
 for data, target in test_loader:
 data, target = data.to(device), target.to(device)
 output = model(data)
 test_loss += F.nll_loss(output, target, reduction='sum').item()
 pred = output.argmax(dim=1, keepdim=True)
 correct += pred.eq(target.view_as(pred)).sum().item()

 test_loss /= len(test_loader.dataset)

 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
 test_loss, correct, len(test_loader.dataset),
 100. * correct / len(test_loader.dataset)))

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 52

The following is PyTorch MNIST.
https://github.com/pytorch/vision/blob/v0.9.0/torchvision/datasets/mnist.py
def get_int(b: bytes) -> int:
 return int(codecs.encode(b, 'hex'), 16)

def open_maybe_compressed_file(path: Union[str, IO]) -> Union[IO, gzip.GzipFile]:
 """Return a file object that possibly decompresses 'path' on the fly.
 Decompression occurs when argument `path` is a string and ends with '.gz' or '.xz'.
 """
 if not isinstance(path, torch._six.string_classes):
 return path
 if path.endswith('.gz'):
 return gzip.open(path, 'rb')
 if path.endswith('.xz'):
 return lzma.open(path, 'rb')
 return open(path, 'rb')

SN3_PASCALVINCENT_TYPEMAP = {
 8: (torch.uint8, np.uint8, np.uint8),
 9: (torch.int8, np.int8, np.int8),
 11: (torch.int16, np.dtype('>i2'), 'i2'),
 12: (torch.int32, np.dtype('>i4'), 'i4'),
 13: (torch.float32, np.dtype('>f4'), 'f4'),
 14: (torch.float64, np.dtype('>f8'), 'f8')
}

def read_sn3_pascalvincent_tensor(path: Union[str, IO], strict: bool = True) -> torch.Tensor:
 """Read a SN3 file in "Pascal Vincent" format (Lush file 'libidx/idx-io.lsh').
 Argument may be a filename, compressed filename, or file object.
 """
 # read
 with open_maybe_compressed_file(path) as f:
 data = f.read()
 # parse
 magic = get_int(data[0:4])
 nd = magic % 256
 ty = magic // 256
 assert 1 <= nd <= 3
 assert 8 <= ty <= 14
 m = SN3_PASCALVINCENT_TYPEMAP[ty]
 s = [get_int(data[4 * (i + 1): 4 * (i + 2)]) for i in range(nd)]
 parsed = np.frombuffer(data, dtype=m[1], offset=(4 * (nd + 1)))
 assert parsed.shape[0] == np.prod(s) or not strict
 return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)

def read_label_file(path: str) -> torch.Tensor:
 with open(path, 'rb') as f:
 x = read_sn3_pascalvincent_tensor(f, strict=False)
 assert(x.dtype == torch.uint8)
 assert(x.ndimension() == 1)
 return x.long()

def read_image_file(path: str) -> torch.Tensor:
 with open(path, 'rb') as f:
 x = read_sn3_pascalvincent_tensor(f, strict=False)
 assert(x.dtype == torch.uint8)
 assert(x.ndimension() == 3)
 return x

def extract_archive(from_path, to_path):
 to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0])
 with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f:
 out_f.write(zip_f.read())

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 53

The above is pytorch mnist.
--- end

Raw MNIST dataset processing
def convert_raw_mnist_dataset_to_pytorch_mnist_dataset(data_url):
 """
 raw

 {data_url}/
 train-images-idx3-ubyte.gz
 train-labels-idx1-ubyte.gz
 t10k-images-idx3-ubyte.gz
 t10k-labels-idx1-ubyte.gz

 processed

 {data_url}/
 train-images-idx3-ubyte.gz
 train-labels-idx1-ubyte.gz
 t10k-images-idx3-ubyte.gz
 t10k-labels-idx1-ubyte.gz
 MNIST/raw
 train-images-idx3-ubyte
 train-labels-idx1-ubyte
 t10k-images-idx3-ubyte
 t10k-labels-idx1-ubyte
 MNIST/processed
 training.pt
 test.pt
 """
 resources = [
 "train-images-idx3-ubyte.gz",
 "train-labels-idx1-ubyte.gz",
 "t10k-images-idx3-ubyte.gz",
 "t10k-labels-idx1-ubyte.gz"
]

 pytorch_mnist_dataset = os.path.join(data_url, 'MNIST')

 raw_folder = os.path.join(pytorch_mnist_dataset, 'raw')
 processed_folder = os.path.join(pytorch_mnist_dataset, 'processed')

 os.makedirs(raw_folder, exist_ok=True)
 os.makedirs(processed_folder, exist_ok=True)

 print('Processing...')

 for f in resources:
 extract_archive(os.path.join(data_url, f), raw_folder)

 training_set = (
 read_image_file(os.path.join(raw_folder, 'train-images-idx3-ubyte')),
 read_label_file(os.path.join(raw_folder, 'train-labels-idx1-ubyte'))
)
 test_set = (
 read_image_file(os.path.join(raw_folder, 't10k-images-idx3-ubyte')),
 read_label_file(os.path.join(raw_folder, 't10k-labels-idx1-ubyte'))
)
 with open(os.path.join(processed_folder, 'training.pt'), 'wb') as f:
 torch.save(training_set, f)
 with open(os.path.join(processed_folder, 'test.pt'), 'wb') as f:
 torch.save(test_set, f)

 print('Done!')

def main():
 # Define the preset running parameters of the training job.

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 54

 parser = argparse.ArgumentParser(description='PyTorch MNIST Example')

 parser.add_argument('--data_url', type=str, default=False,
 help='mnist dataset path')
 parser.add_argument('--train_url', type=str, default=False,
 help='mnist model path')

 parser.add_argument('--batch-size', type=int, default=64, metavar='N',
 help='input batch size for training (default: 64)')
 parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
 help='input batch size for testing (default: 1000)')
 parser.add_argument('--epochs', type=int, default=14, metavar='N',
 help='number of epochs to train (default: 14)')
 parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
 help='learning rate (default: 1.0)')
 parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
 help='Learning rate step gamma (default: 0.7)')
 parser.add_argument('--no-cuda', action='store_true', default=False,
 help='disables CUDA training')
 parser.add_argument('--dry-run', action='store_true', default=False,
 help='quickly check a single pass')
 parser.add_argument('--seed', type=int, default=1, metavar='S',
 help='random seed (default: 1)')
 parser.add_argument('--log-interval', type=int, default=10, metavar='N',
 help='how many batches to wait before logging training status')
 parser.add_argument('--save-model', action='store_true', default=True,
 help='For Saving the current Model')
 args = parser.parse_args()

 use_cuda = not args.no_cuda and torch.cuda.is_available()

 torch.manual_seed(args.seed)

 # Set whether to use GPU or CPU to run the algorithm.
 device = torch.device("cuda" if use_cuda else "cpu")

 train_kwargs = {'batch_size': args.batch_size}
 test_kwargs = {'batch_size': args.test_batch_size}
 if use_cuda:
 cuda_kwargs = {'num_workers': 1,
 'pin_memory': True,
 'shuffle': True}
 train_kwargs.update(cuda_kwargs)
 test_kwargs.update(cuda_kwargs)

 # Define the data preprocessing method.
 transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])

 # Convert the raw MNIST dataset to a PyTorch MNIST dataset.
 convert_raw_mnist_dataset_to_pytorch_mnist_dataset(args.data_url)

 # Create a training dataset and a validation dataset.
 dataset1 = datasets.MNIST(args.data_url, train=True, download=False,
 transform=transform)
 dataset2 = datasets.MNIST(args.data_url, train=False, download=False,
 transform=transform)

 # Create iterators for the training dataset and the validation dataset.
 train_loader = torch.utils.data.DataLoader(dataset1, **train_kwargs)
 test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

 # Initialize the neural network model and copy the model to the compute device.
 model = Net().to(device)
 # Define the training optimizer and learning rate for gradient descent calculation.
 optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
 scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 55

 # Train the neural network and perform validation in each epoch.
 for epoch in range(1, args.epochs + 1):
 train(args, model, device, train_loader, optimizer, epoch)
 test(model, device, test_loader)
 scheduler.step()

 # Save the model and make it adapted to the ModelArts inference model package specifications.
 if args.save_model:

 # Create the model directory in the path specified in train_url.
 model_path = os.path.join(args.train_url, 'model')
 os.makedirs(model_path, exist_ok = True)

 # Save the model to the model directory based on the ModelArts inference model package
specifications.
 torch.save(model.state_dict(), os.path.join(model_path, 'mnist_cnn.pt'))

 # Copy the inference code and configuration file to the model directory.
 the_path_of_current_file = os.path.dirname(__file__)
 shutil.copyfile(os.path.join(the_path_of_current_file, 'infer/customize_service.py'),
os.path.join(model_path, 'customize_service.py'))
 shutil.copyfile(os.path.join(the_path_of_current_file, 'infer/config.json'), os.path.join(model_path,
'config.json'))

if __name__ == '__main__':
 main()

Create the inference script customize_service.py on the local host. The content is
as follows:
import os
import log
import json

import torch.nn.functional as F
import torch.nn as nn
import torch
import torchvision.transforms as transforms

import numpy as np
from PIL import Image

from model_service.pytorch_model_service import PTServingBaseService

logger = log.getLogger(__name__)

Define model preprocessing.
infer_transformation = transforms.Compose([
 transforms.Resize(28),
 transforms.CenterCrop(28),
 transforms.ToTensor(),
 transforms.Normalize((0.1307,), (0.3081,))
])

Model inference service
class PTVisionService(PTServingBaseService):

 def __init__(self, model_name, model_path):
 # Call the constructor of the parent class.
 super(PTVisionService, self).__init__(model_name, model_path)

 # Call the customized function to load the model.
 self.model = Mnist(model_path)

 # Load labels.
 self.label = [0,1,2,3,4,5,6,7,8,9]

 # Receive the request data and convert it to the input format acceptable to the model.
 def _preprocess(self, data):

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 56

 preprocessed_data = {}
 for k, v in data.items():
 input_batch = []
 for file_name, file_content in v.items():
 with Image.open(file_content) as image1:
 # Gray processing
 image1 = image1.convert("L")
 if torch.cuda.is_available():
 input_batch.append(infer_transformation(image1).cuda())
 else:
 input_batch.append(infer_transformation(image1))
 input_batch_var = torch.autograd.Variable(torch.stack(input_batch, dim=0), volatile=True)
 print(input_batch_var.shape)
 preprocessed_data[k] = input_batch_var

 return preprocessed_data

 # Post-process the inference result to obtain the expected output format. The result is the returned value.
 def _postprocess(self, data):
 results = []
 for k, v in data.items():
 result = torch.argmax(v[0])
 result = {k: self.label[result]}
 results.append(result)
 return results

 # Perform forward inference on the input data to obtain the inference result.
 def _inference(self, data):

 result = {}
 for k, v in data.items():
 result[k] = self.model(v)

 return result

Define a network.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 32, 3, 1)
 self.conv2 = nn.Conv2d(32, 64, 3, 1)
 self.dropout1 = nn.Dropout(0.25)
 self.dropout2 = nn.Dropout(0.5)
 self.fc1 = nn.Linear(9216, 128)
 self.fc2 = nn.Linear(128, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(x)
 x = self.conv2(x)
 x = F.relu(x)
 x = F.max_pool2d(x, 2)
 x = self.dropout1(x)
 x = torch.flatten(x, 1)
 x = self.fc1(x)
 x = F.relu(x)
 x = self.dropout2(x)
 x = self.fc2(x)
 output = F.log_softmax(x, dim=1)
 return output

def Mnist(model_path, **kwargs):
 # Generate a network.
 model = Net()

 # Load the model.
 if torch.cuda.is_available():
 device = torch.device('cuda')

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 57

 model.load_state_dict(torch.load(model_path, map_location="cuda:0"))
 else:
 device = torch.device('cpu')
 model.load_state_dict(torch.load(model_path, map_location=device))

 # CPU or GPU mapping
 model.to(device)

 # Turn the model to inference mode.
 model.eval()

 return model

Infer the configuration file config.json on the local host. The content is as follows:

{
 "model_algorithm": "image_classification",
 "model_type": "PyTorch",
 "runtime": "pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64"
}

Step 3 Create an OBS Bucket and Upload Files to OBS
Upload the data, code file, inference code file, and inference configuration file
obtained in the previous step to an OBS bucket. When running a training job on
ModelArts, read data and code files from the OBS bucket.

1. Log in to the OBS console and create an OBS bucket and folder. Figure 2-4
shows an example of the created objects. For details, see and .
{OBS bucket} # OBS bucket name, which is customizable, for example, test-modelarts-
xx
 -{OBS folder} # OBS folder name, which is customizable, for example, pytorch
 - mnist-data # OBS folder, which is used to store the training dataset. The folder name is
customizable, for example, mnist-data.
 - mnist-code # OBS folder, which is used to store training script train.py. The folder name is
customizable, for example, mnist-code.
 - infer # OBS folder, which is used to store inference script customize_service.py and
configuration file config.json
 - mnist-output # OBS folder, which is used to store trained models. The folder name is
customizable, for example, mnist-output.

CA UTION

● The region where the created OBS bucket resides must be the same as that
where ModelArts is used. Otherwise, the OBS bucket will be unavailable for
training.

● When creating an OBS bucket, do not set the archive storage class.
Otherwise, training models will fail.

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 58

Figure 2-4 OBS file directory

2. Upload the MNIST dataset package obtained in Step 1 Prepare the Training
Data to OBS. For details, see .

CA UTION

● When uploading data to OBS, do not encrypt the data. Otherwise, the
training will fail.

● Files do not need to be decompressed. Directly upload compressed
packages to OBS.

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 59

Figure 2-5 Uploading a dataset to the mnist-data folder

3. Upload the training script train.py to the mnist-code folder.

Figure 2-6 Uploading the training script train.py to the mnist-code folder

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 60

4. Upload the inference script customize_service.py and inference configuration
file config.json to the infer folder.

Figure 2-7 Uploading customize_service.py and config.json to the infer
folder

Step 4 Create a Training Job
1. Log in to the ModelArts management console and select the same region as

the OBS bucket.
2. In the navigation pane on the left, choose Settings and check whether access

authorization has been configured for the current account. For details, see . If
you have been authorized using access keys, clear the authorization and
configure agency authorization.

3. In the navigation pane on the left, choose Training Management > Training
Jobs. On the displayed page, click Create Training Job.

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 61

Figure 2-8 Training Jobs

4. Set parameters.
– Algorithm Type: Select Custom algorithm.
– Boot Mode: Select Preset image and then select PyTorch and

pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 from the drop-
down lists.

– Code Directory: Select the created OBS code directory, for example, /
test-modelarts-xx/pytorch/mnist-code/ (replace test-modelarts-xx
with your OBS bucket name).

– Boot File: Select the training script train.py uploaded to the code
directory.

– Input: Add one input and set its name to data_url. Set the data path to
your OBS directory, for example, /test-modelarts-xx/pytorch/mnist-
data/ (replace test-modelarts-xx with your OBS bucket name).

– Output: Add one output and set its name to train_url. Set the data path
to your OBS directory, for example, /test-modelarts-xx/pytorch/mnist-
output/ (replace test-modelarts-xx with your OBS bucket name). Do not
pre-download to a local directory.

– Resource Type: Select GPU and then GPU: 1*NVIDIA-V100(16GB) | CPU:
8 vCPUs 64GB (example). If there are free GPU specifications, you can
select them for training.

– Retain default settings for other parameters.

NO TE

The sample code runs on a single node with a single card. If you select a flavor
with multiple GPUs, the training will fail.

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 62

Figure 2-9 Training job settings

Figure 2-10 Setting training input and output

Figure 2-11 Configuring the resource type

5. Click Submit, confirm parameter settings for the training job, and click Yes.

The system automatically switches back to the Training Jobs page. When the
training job status changes to Completed, the model training is completed.

NO TE

In this case, the training job will take about 10 minutes.

6. Click the training job name. On the job details page that is displayed, check
whether there are error messages in logs. If so, the training failed. Identify the
cause and locate the fault based on the logs.

7. In the lower left corner of the training details page, click the training output
path to go to OBS (as shown in Figure 2-12). Then, check whether the model
folder is available and whether there are any trained models in the folder (as
shown in Figure 2-13). If there is no model folder or trained model, the
training input may be incomplete. In this case, completely upload the training
data and train the model again.

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 63

Figure 2-12 Output path

Figure 2-13 Trained model

Step 5 Deploy the Model for Inference

After the model training is complete, create an AI application and deploy it as a
real-time service.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose AI Application Management > AI Applications. On the My AI
Applications page, click Create.

2. On the Create page, configure parameters and click Create now.
Choose Training Job for Meta Model Source. Select the training job
completed in Step 4 Create a Training Job from the drop-down list and

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 64

select Dynamic loading. The values of AI Engine will be automatically
configured.

Figure 2-14 Meta Model Source

NO TE

If you have used Training Jobs of an old version, you can see both Training Jobs and
Training Jobs New below Training job. In this case, select Training Jobs New.

3. On the AI Applications page, if the application status changes to Normal, it
has been created. Click the option button on the left of the AI application
name to display the version list at the bottom of the list page, and choose
Deploy > Real-Time Services in the Operation column to deploy the AI
application as a real-time service.

Figure 2-15 Deploying a real-time service

4. On the Deploy page, configure parameters and create a real-time service as
prompted. In this example, use CPU specifications. If there are free CPU
specifications, you can select them for deployment. (Each user can deploy
only one real-time service for free. If you have deployed one, delete it first
before deploying a new one for free.)

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 65

Figure 2-16 Deploying a model

After you submit the service deployment request, the system automatically
switches to the Real-Time Services page. When the service status changes to
Running, the service has been deployed.

Figure 2-17 Deployed service

Step 6 Perform Prediction
1. On the Real-Time Services page, click the name of the real-time service. The

real-time service details page is displayed.
2. Click the Prediction tab, set Request Type to multipart/form-data, Request

Parameter to image, click Upload to upload a sample image, and click
Predict.
After the prediction is complete, the prediction result is displayed in the Test
Result pane. According to the prediction result, the digit on the image is 2.

NO TE

The MNIST used in this case is a simple dataset used for demonstration, and its
algorithms are also simple neural network algorithms used for teaching. The models
generated using such data and algorithms are applicable only to teaching but not to
complex prediction scenarios. The prediction is accurate only if the image used for
prediction is similar to the image in the training dataset (white characters on black
background).

Figure 2-18 Example

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 66

Figure 2-19 Prediction results

Step 7 Release Resources
If you do not need to use this model and real-time service anymore, release the
resources to stop billing.
● On the Real-Time Services page, locate the row containing the target service

and click Stop or Delete in the Operation column.
● On the AI Applications page in AI Application Management, locate the row

containing the target service and click Delete in the Operation column.
● On the Training Jobs page, click Delete in the Operation column to delete

the finished training job.
● Go to OBS and delete the OBS bucket, folders, and files used in this example.

FAQs
● Why Is a Training Job Always Queuing?

If the training job is always queuing, the selected resources are limited in the
resource pool, and the job needs to be queued. In this case, wait for resources.
For details, see .

● Why Can't I Find My Created OBS Bucket After I Select an OBS Path in
ModelArts?
Ensure that the created bucket is in the same region as ModelArts. For details,
see .

ModelArts
Best Practices

2 Model Development (Custom Algorithms in
Training Jobs of the New Version)

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 67

3 Model Inference

3.1 Creating a Custom Image and Using It to Create an
AI Application

If you want to use an AI engine that is not supported by ModelArts, create a
custom image for the engine, import the image to ModelArts, and use the image
to create AI applications. This section describes how to use a custom image to
create an AI application and deploy the application as a real-time service.

The process is as follows:

1. Building an Image Locally: Create a custom image package locally. For
details, see Custom Image Specifications for Creating AI Applications.

2. Verifying the Image Locally and Uploading It to SWR: Verify the APIs of the
custom image and upload the custom image to SWR.

3. Using the Custom Image to Create an AI Application: Import the image to
ModelArts AI application management.

4. Deploying the AI Application as a Real-Time Service: Deploy the model as
a real-time service.

Building an Image Locally

This section uses a Linux x86_x64 host as an example. You can use an existing
local host to create a custom image.

1. Install Docker. For details, see Docker official documents. The following
shows an example:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

2. Obtain the base image. Ubuntu 18.04 is used in this example.
docker pull ubuntu:18.04

3. Create the self-define-images folder, and edit Dockerfile and test_app.py in
the folder for the custom image. In the sample code, the application code
runs on the Flask framework.
The file structure is as follows:

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 68

https://support.huaweicloud.com/eu/docker-modelarts/modelarts_23_0219.html
https://docs.docker.com/engine/install/binaries/#install-static-binaries

self-define-images/
 --Dockerfile
 --test_app.py

– Dockerfile
From ubuntu:18.04
Configure the source and install Python, Python3-PIP, and Flask.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.xxx.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.xxx.com@g" /etc/apt/sources.list && \
 apt-get update && \
 apt-get install -y python3 python3-pip && \
 pip3 install --trusted-host https://repo.xxx.com -i https://repo.xxx.com/repository/pypi/simple
Flask

Copy the application code to the image.
COPY test_app.py /opt/test_app.py

Specify the boot command of the image.
CMD python3 /opt/test_app.py

– test_app.py
from flask import Flask, request
import json
app = Flask(__name__)

@app.route('/greet', methods=['POST'])
def say_hello_func():
 print("----------- in hello func ----------")
 data = json.loads(request.get_data(as_text=True))
 print(data)
 username = data['name']
 rsp_msg = 'Hello, {}!'.format(username)
 return json.dumps({"response":rsp_msg}, indent=4)

@app.route('/goodbye', methods=['GET'])
def say_goodbye_func():
 print("----------- in goodbye func ----------")
 return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("----------- in default func ----------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080)

NO TE

ModelArts forwards requests to port 8080 of the service started from the custom
image. Therefore, the service listening port in the container must be port 8080.
See the test_app.py file.

4. Switch to the self-define-images folder and run the following command to
create custom image test:v1:
docker build -t test:v1 .

5. Run docker image to view the custom image you have created.

Verifying the Image Locally and Uploading It to SWR
1. Run the following command in the local environment to start the custom

image:
docker run -it -p 8080:8080 test:v1

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 69

Figure 3-1 Starting a custom image

2. Open another terminal and run the following commands to test the functions
of the three APIs of the custom image:
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/greet
curl -X GET 127.0.0.1:8080/goodbye

If information similar to the following is displayed, the function verification is
successful.

Figure 3-2 Testing API functions

3. Upload the custom image to SWR. For details, see How Can I Upload Images
to SWR?

4. View the uploaded image on the My Images > Private Images page of the
SWR console.

Figure 3-3 Uploaded images

Using the Custom Image to Create an AI Application
Import a meta model. For details, see Creating and Importing a Model Image.
Key parameters are as follows:
● Meta Model Source: Select Container image.

– Container Image Path: Select the created private image.

Figure 3-4 Created private image

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 70

https://support.huaweicloud.com/eu/docker-modelarts/docker-modelarts_0018.html
https://support.huaweicloud.com/eu/docker-modelarts/docker-modelarts_0018.html
https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0009.html

– Container API: Protocol and port number for starting a model. This
parameter is optional.

– Health Check: checks health status of a model. This parameter is
optional. This parameter is configurable only when the health check API
is configured in the custom image. Otherwise, creating the AI application
will fail.

● APIs: APIs of a custom image. This parameter is optional. The model APIs
must comply with ModelArts specifications. For details, see Specifications for
Compiling the Model Configuration File.
The configuration file is as follows:
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{
 "url": "/greet",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{
 "url": "/goodbye",
 "method": "get",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 }
]

Deploying the AI Application as a Real-Time Service
1. Deploy the AI application as a real-time service. For details, see Deploying as

a Real-Time Service.
2. View the details about the real-time service.

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 71

https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0056.html
https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0056.html
https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0018.html
https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0018.html

Figure 3-5 Usage Guides

3. Access the real-time service on the Prediction tab page.

Figure 3-6 Accessing a real-time service

3.2 End-to-End O&M of Inference Services
The end-to-end O&M of ModelArts inference services involves the entire AI
process including algorithm development, service O&M, and service running.

Overview

End-to-End O&M Process

● During algorithm development, store service data in Object Storage Service
(OBS), and then label and manage the data using ModelArts data

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 72

management. After the data is trained, obtain an AI model and create AI
application images using a development environment.

● During service O&M, use an image to create an AI application and deploy the
AI application as a real-time service. You can obtain the monitoring data of
the ModelArts real-time service on the Cloud Eye management console.
Configure alarm rules so that you can be notified of alarms in real time.

● During service running, access real-time service requests into the service
system and then configure service logic and monitoring.

Figure 3-7 End-to-end O&M process for inference services

During the entire O&M process, service request failures and high resource usage
are monitored. When the resource usage threshold is reached, the system will
send an alarm notification to you.

Figure 3-8 Alarming process

Advantages

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 73

End-to-end service O&M enables you to easily check service running at both peak
and off-peak hours and detect the health status of real-time services in real time.

Constraints

End-to-end service O&M applies only to real-time services because Cloud Eye does
not monitor batch or edge inference services.

Procedure
This section uses an occupant safety algorithm in travel as an example to describe
how to use ModelArts for process-based service deployment and update, as well
as automatic service O&M and monitoring.

Figure 3-9 Occupant safety algorithm implementation

Step 1 Use a locally developed model to create a custom image and use the image to
create an AI application on ModelArts. For details, see .

Step 2 On the ModelArts management console, deploy the created AI application as a
real-time service.

Step 3 Log in to the Cloud Eye management console, configure ModelArts alarm rules
and enable notifications with a topic subscribed to. For details, see .

After the configuration, choose Cloud Service Monitoring > ModelArts in the
navigation pane on the left to view the requests and resource usage of the real-
time service.

Figure 3-10 Viewing service monitoring metrics

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 74

When an alarm is triggered based on the monitored data, the object who has
subscribed to the target topic will receive a message notification.

----End

3.3 Creating an AI Application Using a Custom Engine
When you use a custom engine to create an AI application, you can select your
image stored in SWR as the engine and specify a file directory in OBS as the
model package. In this way, bring-your-own images can be used to meet your
dedicated requirements.

Before deploying such an AI application as a service, ModelArts downloads the
SWR image to the cluster and starts the image as a container as the user whose
UID is 1000 and GID is 100. Then, ModelArts downloads the OBS file to the /
home/mind/model directory in the container and runs the boot command preset
in the SWR image. The service available to port 8080 in the container is
automatically registered with APIG. You can access the service through the APIG
URL.

Specifications for Using a Custom Engine to Create an AI Application

To use a custom engine to create an AI application, ensure the SWR image, OBS
model package, and file size comply with the following requirements:

● SWR image specifications

– A common user named ma-user in group ma-group must be built in the
SWR image. Additionally, the UID and GID of the user must be 1000 and
100, respectively. The following is the dockerfile command for the built-in
user:
groupadd -g 100 ma-group && useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-
user

– Specify a command for starting the image. In the dockerfile, specify cmd.
The following shows an example:
CMD sh /home/mind/run.sh

Customize the startup entry file run.sh. The following is an example.
#!/bin/bash

User-defined script content
...

run.sh calls app.py to start the server. For details about app.py, see "HTTPS Example".
python app.py

– The service must be HTTPS enabled, and it is available on port 8080. For
details, see the HTTPS example.

– (Optional) On port 8080, enable health check with URL /health. (The
health check URL must be /health.)

● OBS model package specifications

The name of the model package must be model. For details about model
package specifications, see Introduction to Model Package Specifications.

● File size specifications

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 75

https://support.huaweicloud.com/eu/inference-modelarts/inference-modelarts-0055.html

When a public resource pool is used, the total size of the downloaded SWR
image (not the compressed image displayed on the SWR page) and the OBS
model package cannot exceed 30 GB.

HTTPS Example
Use Flask to start HTTPS. The following is an example of the web server code:

from flask import Flask, request
import json

app = Flask(__name__)

@app.route('/greet', methods=['POST'])
def say_hello_func():
 print("----------- in hello func ----------")
 data = json.loads(request.get_data(as_text=True))
 print(data)
 username = data['name']
 rsp_msg = 'Hello, {}!'.format(username)
 return json.dumps({"response":rsp_msg}, indent=4)

@app.route('/goodbye', methods=['GET'])
def say_goodbye_func():
 print("----------- in goodbye func ----------")
 return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("----------- in default func ----------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

@app.route('/health', methods=['GET'])
def healthy():
 return "{\"status\": \"OK\"}"

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080, ssl_context='adhoc')

Debugging on a Local Computer
Perform the following operations on a local computer with Docker installed to
check whether a custom engine complies with specifications:

1. Download the custom image, for example, custom_engine:v1 to the local
computer.

2. Copy the model package folder model to the local computer.
3. Run the following command in the same directory as the model package

folder to start the service:
docker run --user 1000:100 -p 8080:8080 -v model:/home/mind/model custom_engine:v1

NO TE

This command is used for simulation only because the directory mounted to -v is
assigned the root permission. In the cloud environment, after the model file is
downloaded from OBS to /home/mind/model, the file owner will be changed to ma-
user.

4. Start another terminal on the local computer and run the following command
to obtain the expected inference result:

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 76

curl https://127.0.0.1:8080/${Request path to the inference service}

Deployment Example
The following section describes how to use a custom engine to create an AI
application.

1. Create an AI application and viewing its details.
Log in to the ModelArts console, choose AI Application Management > AI
Applications, and click Create. On the page that is displayed, configure the
following parameters:
– Meta Model Source: OBS
– Meta Model: a model package selected from OBS
– AI Engine: Custom
– Engine Package: an SWR image

Retain the default settings for other parameters.
Click Create Now. In the AI application list that is displayed, check the AI
application status. When its status changes to Normal, the AI application has
been created.

Figure 3-11 Creating an AI application

Click the AI application name. On the page that is displayed, view details
about the AI application.

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 77

https://docs.docker.com/engine/reference/commandline/run/

Figure 3-12 Viewing details about an AI application

2. Deploy the AI application as a service and view service details.
On the AI application details page, choose Deploy > Real-Time Services in
the upper right corner. On the Deploy page, select a proper compute node
specification, retain the default settings for other parameters, and click Next.
When the service status changes to Running, the service has been deployed.

Figure 3-13 Deploying a service

Click the service name. On the page that is displayed, view the service details.
Click the Logs tab to view the service logs.

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 78

Figure 3-14 Logs

3. Use the service for prediction.
On the service details page, click the Prediction tab to use the service for
prediction.

Figure 3-15 Prediction

3.4 Using a Large Model to Create an AI Application
and Deploying a Real-Time Service

Context
Currently, a large model can have hundreds of billions or even trillions of
parameters, and its size becomes larger and larger. A large model with hundreds
of billions of parameters exceeds 200 GB, and poses new requirements for version
management and production deployment of the platform. For example, importing
AI applications requires dynamic adjustment of the tenant storage quota. Slow
model loading and startup requires a flexible timeout configuration in the
deployment. The service recovery time needs to be shortened in the event that the
model needs to be reloaded upon a restart caused by a load exception.

To address the preceding requirements, the ModelArts inference platform provides
a solution to AI application management and service deployment in large model
application scenarios.

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 79

Constraints
● You need to apply for the size quota of an AI application and add the

whitelist cached using the local storage of the node.

● You need to use the custom engine Custom to configure dynamic loading.

● A dedicated resource pool is required to deploy the service.

● The disk space of the dedicated resource pool must be greater than 1 TB.

Procedure
1. Applying for Increasing the Size Quota of an AI Application and Using the

Local Storage of the Node to Cache the Whitelist

2. Uploading Model Data and Verifying the Consistency of Uploaded Objects

3. Creating a Dedicated Resource Pool

4. Creating an AI Application

5. Deploying a Real-Time Service

Applying for Increasing the Size Quota of an AI Application and Using the
Local Storage of the Node to Cache the Whitelist

During service deployment, the dynamically loaded model package is stored in the
temporary disk space by default. When the service is stopped, the loaded files are
deleted, and they need to be reloaded when the service is restarted. To avoid
repeated loading, the platform allows the model package to be loaded from the
local storage space of the node in the resource pool and keeps the loaded files
valid even when the service is stopped or restarted (using the hash value to ensure
data consistency).

To use a large model, you need to use a custom engine and enable dynamic
loading when importing the model. In this regard, you need to perform the
following operations:

● If the model size exceeds the default quota, submit a service ticket to increase
the size quota of a single AI application. The default size quota of an AI
application is 20 GB.

● Submit a service ticket to add the whitelist cached using the local storage of
the node.

Uploading Model Data and Verifying the Consistency of Uploaded Objects

To ensure data integrity during dynamic loading, you need to verify the
consistency of uploaded objects when uploading model data to OBS. obsutil, OBS
Browser+, and OBS SDKs support verification of data consistency during upload.
You can select a method that meets your requirements. For details, see "Verifying
Data Consistency During Upload" in Object Storage Service documentation.

For example, if you upload data via OBS Browser+, enable MD5 verification, as
shown in Figure 3-16. When dynamic loading is enabled and the local persistent
storage of the node is used, OBS Browser+ checks data consistency during data
upload.

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 80

Figure 3-16 Configuring MD5 verification for OBS Browser+

Creating a Dedicated Resource Pool
To use the local persistent storage, you need to create a dedicated resource pool
whose disk space is greater than 1 TB. You can view the disk information on the
Specifications tab of the Basic Information page of the dedicated resource pool.
If a service fails to be deployed and the system displays a message indicating that
the disk space is insufficient, see What Do I Do If Resources Are Insufficient
When a Real-Time Service Is Deployed, Started, Upgraded, or Modified.

Figure 3-17 Viewing the disk information of the dedicated resource pool

Creating an AI Application
If you use a large model to create an AI application and import the model from
OBS, complete the following configurations:

1. Use a custom engine and enable dynamic loading.
To use a large model, you need to use a custom engine and enable dynamic
loading when importing the model. You can create a custom engine to meet
special requirements for image dependency packages and inference
frameworks in large model scenarios. For details about how to create a
custom engine, see Creating an AI Application Using a Custom Engine.
When you use a custom engine, dynamic loading is enabled by default. The
model package is separated from the image, and the model is dynamically
loaded to the service load during service deployment.

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 81

https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_05_3155.html
https://support.huaweicloud.com/eu/trouble-modelarts/modelarts_05_3155.html

2. Configure health check.
Health check is mandatory for the AI applications imported using a large
model to identify unavailable services that are displayed as started.

Figure 3-18 Using a custom engine, enabling dynamic loading, and
configuring health check

Deploying a Real-Time Service

When deploying the service, complete the following configurations:

1. Customize the deployment timeout interval.
Generally, the time for loading and starting a large model is longer than that
for a common model. Set Timeout to a proper value. Otherwise, the timeout
may elapse prior to the completion of the model startup, and the deployment
may fail.

2. Add an environment variable.
During service deployment, add the following environment variable to set the
service traffic load balancing policy to cluster affinity, preventing unready
service instances from affecting the prediction success rate:
MODELARTS_SERVICE_TRAFFIC_POLICY: cluster

Figure 3-19 Customizing the deployment timeout interval and adding an
environment variable

You are advised to deploy multiple instances to improve service reliability.

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 82

3.5 High-Speed Access to Inference Services Through
VPC Peering

Context

When accessing a real-time service, you may require:

● High throughput and low latency

● TCP or RPC requests

To meet these requirements, ModelArts enables high-speed access through VPC
peering.

In high-speed access through VPC peering, your service requests are directly sent
to instances through VPC peering but not through the inference platform. This
accelerates service access.

NO TE

The following functions that are available through the inference platform will be
unavailable if you use high-speed access:

● Authentication

● Traffic distribution by configuration

● Load balancing

● Alarm, monitoring, and statistics

Figure 3-20 High-speed access through VPC peering

Preparations

Deploy a real-time service in a dedicated resource pool and ensure the service is
running.

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 83

NO TICE

● For details about how to deploy services in new-version dedicated resource
pools, see Comprehensive Upgrades to ModelArts Resource Pool
Management Functions.

● Only the services deployed in a dedicated resource pool support high-speed
access through VPC peering.

● High-speed access through VPC peering is available only for real-time services.
● Due to traffic control, the number of calls of each tenant account cannot

exceed 2000 per minute, and that of each IAM user account cannot exceed 20
per minute.

● High-speed access through VPC peering is available only for the services
deployed using the AI applications imported from custom images.

Procedure
To enable high-speed access to a real-time service through VPC peering, perform
the following operations:

1. Interconnect the dedicated resource pool to the VPC.
2. Create an ECS in the VPC.
3. Obtain the IP address and port number of the service.
4. Access the service through the IP address and port number.

Step 1 Interconnect the dedicated resource pool to the VPC.

Log in to the ModelArts management console, choose Dedicated Resource Pools
> Elastic Cluster, locate the dedicated resource pool used for service deployment,
and click its name/ID to go to the resource pool details page. Obtain the network
configuration. Switch back to the dedicated resource pool list, click the Network
tab, locate the network associated with the dedicated resource pool, and
interconnect it with the VPC. After the VPC is accessed, the VPC will be displayed
on the network list and resource pool details pages. Click the VPC to go to the
details page.

Figure 3-21 Locating the target dedicated resource pool

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 84

https://support.huaweicloud.com/eu/resmgmt-modelarts/resmgmt-modelarts_0002.html
https://support.huaweicloud.com/eu/resmgmt-modelarts/resmgmt-modelarts_0002.html

Figure 3-22 Obtaining the network configuration

Figure 3-23 Interconnecting the VPC

Step 2 Create an ECS in the VPC.

Log in to the ECS management console and click Buy ECS in the upper right
corner. On the Buy ECS page, configure basic settings and click Next: Configure
Network. On the Configure Network page, select the VPC connected in Step 1,
configure other parameters, confirm the settings, and click Submit. When the ECS
status changes to Running, the ECS has been created. Click its name/ID to go to
the server details page and view the VPC configuration.

Figure 3-24 Purchasing an ECS

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 85

Step 3 Obtain the IP address and port number of the service.

GUI software, for example, Postman can be used to obtain the IP address and port
number. Alternatively, log in to the ECS, create a Python environment, and execute
code to obtain the service IP address and port number.

API:

GET /v1/{project_id}/services/{service_id}/predict/endpoints?type=host_endpoints

For details about how to obtain a service endpoint, see "Before You Start" >
"Endpoints" in ModelArts API Reference.

● Obtain the IP address and port number using GUI software.

Figure 3-25 Example response

● Obtain the IP address and port number using Python.
The Python code is as follows (mandatory parameters must be configured):

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 86

def get_app_info(project_id, service_id):
list_host_endpoints_url = "{}/v1/{}/services/{}/predict/endpoints?type=host_endpoints"
url = list_host_endpoints_url.format(REGION_ENDPOINT, project_id, service_id)
headers = {'X-Auth-Token': X_Auth_Token}
response = requests.get(url, headers=headers)
print(response.content)

Step 4 Access the service through the IP address and port number.

Log in to the ECS and access the real-time service either by running Linux
commands or by creating a Python environment and executing Python code.
Obtain the values of schema, ip, and port from Step 3.
● Run the following command to access the real-time service:

curl --location --request POST 'http://192.168.205.58:31997' \
--header 'Content-Type: application/json' \
--data-raw '{"a":"a"}'

Figure 3-26 Accessing a real-time service

● Create a Python environment and execute Python code to access the real-
time service.
def vpc_infer(schema, ip, port, body):
infer_url = "{}://{}:{}"
url = infer_url.format(schema, ip, port)
response = requests.post(url, data=body)
print(response.content)

----End

ModelArts
Best Practices 3 Model Inference

Issue 01 (2024-06-12) Copyright © Huawei Technologies Co., Ltd. 87

	Contents
	1 Permissions Management
	1.1 Basic Concepts
	1.2 Permission Management Mechanisms
	1.2.1 IAM
	1.2.2 Agencies and Dependencies
	1.2.3 Workspace

	1.3 Configuration Practices in Typical Scenarios
	1.3.1 Assigning Permissions to Individual Users for Using ModelArts
	1.3.2 Separately Assigning Permissions to Administrators and Developers
	1.3.3 Viewing the Notebook Instances of All IAM Users Under One Tenant Account
	1.3.4 Logging In to a Training Container Using Cloud Shell
	1.3.5 Prohibiting a User from Using a Public Resource Pool

	2 Model Development (Custom Algorithms in Training Jobs of the New Version)
	2.1 Using a Custom Algorithm to Build a Handwritten Digit Recognition Model

	3 Model Inference
	3.1 Creating a Custom Image and Using It to Create an AI Application
	3.2 End-to-End O&M of Inference Services
	3.3 Creating an AI Application Using a Custom Engine
	3.4 Using a Large Model to Create an AI Application and Deploying a Real-Time Service
	3.5 High-Speed Access to Inference Services Through VPC Peering

